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Abstract—In this paper, we propose a 3D indoor map
building method based on Monte Carlo localization in 2D
map. The traditional 3D SLAM mainly adopts the visual
odometry technology for robot localization. However, the visual
localization has a poor real-time performance. Besides, in some
special scenarios, such as corridors, the visual localization may
generate matching errors, resulting in cumulative errors. These
errors will lead to a wrong robot localization. The Monte Carlo
localization based on lidar in 2D map can achieve a higher
localization accuracy. Therefore, we use the above method to
replace the visual localization while using a kinect to collect
3D environment information. To study the performance of the
proposed method, we make some experiments and compare
with the popular open source RGB-D SLAM system based on
visual localization provided by Felix Endres et al. in 2014. The
experimental results demonstrate that our method has better
effect in the indoor corridor environment with less features.
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calization, 3D indoor map building

I. INTRODUCTION

Mobile robot simultaneous localization and mapping (S-

LAM) is one of the key technologies to realize autonomous

navigation of the robot [1]. As the mobility of a robot

and the complexity of an indoor environment have been

increasing, the robot must consider the 3D information of

the environment in order to determine its mobile strategy.

3D SLAM technology is an important approach to improve

the robot mobility and perception ability.

With the development of image processing and computer

vision technology, the localization technology based on vi-

sion sensors is widely applied in the robot indoor 3D SLAM

[2]. Kinect, is a vision sensor which can provide color and

depth information of the environment [3]. By implementing

feature extraction and matching of the collected image, the

visual odometry can execute motion estimation to locate the

robot [4][5]. But the process of image feature extraction

and matching consumes a large amount of computational

resources which reduces the real-time performance. Besides,

due to the visual localization depends on the image informa-

tion, there exists matching errors under some special scene,

such as corridors. At the same time, only relying on a single

sensor, for example the kinect, the cumulative errors of the

system can’t be corrected [6].

In a robot navigation system, a robot uses a lidar and

a wheeled odometry, and then combine them with Monte

Carlo localization (MCL) algorithm which can achieve a

higher localization accuracy in 2D map. Therefore, we adopt

the above method to replace the visual localization which

can avoid the process of image feature extraction and match-

ing, and reduces the time-consuming. Meanwhile, the multi

sensor information fusion among kinect, lidar and odometry

can correct the cumulative errors of the system. The MCL in

a 2D map can afford us the robot poses at different time. By

calculating the relationship among these poses, we can get

the pose transition matrices. These transition matrices are

served for the 3D point cloud registration [7]. After that, we

finally get the indoor 3D map.

The rest of this paper is organised as follows. Section

II introduces the Monte Carlo localization theory. Section

III discusses the 3D indoor mapping. In section IV, we

make some experiments to verify the effect of the proposed

method and compare with the popular open source RGB-

D SLAM system based on visual localization provided by

Felix Endres et al. in [8]. The last section summarizes the

work of this paper.

II. MONTE CARLO LOCALIZATION THEORY

MCL is an algorithm that can determine a robot position

in a 2D map. By using the particle filter, it is applicable

to both local and global localization problems [9]. It is

easy to implement and tend to work well across abroad

range of localization problems. Due to the robot motion

model p(xt|xt−1, ut−1) and measurement model p(zt|xt)
are applied to the prediction stage and update stage of MCL,

we will introduce these two models at first [10] .

A. Robot motion model

Robot motion model uses the relative motion information

as measured by the robots internal odometry. More specif-

ically, in the time interval (t − 1, t], the robot advances

from xt−1 to xt. The odometry reports back to us a related

advance from xt−1 = (x y θ) to xt = (x′ y′ θ
′
)

. This affords us relative odometry information by the

following equations:

δrot1 = arctan 2(y′ − y, x′ − x)− θ (1)
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δtrans =
√
(x− x′)2 + (y − y′)2 (2)

δrot2 = θ
′ − θ − δrot1 (3)

Where the letters with a bar indicate that these are odom-

etry measurements embedded in a robot internal coordinate

whose relation to the global world coordinates is unknown.

The robot motion in the time interval (t, t − 1] is approxi-

mated by a rotation δrot1 , followed by a translation δtrans
and a second rotation δrot2 . To model the motion error, we

assume that the true values of the rotation and translation are

obtained from the measured ones by subtracting independent

noise sample (εb2) :

δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans) (4)

δ̂trans = δtrans−sample(α3δ
2
trans+α4δ

2
rot1+α4δ

2
rot2) (5)

δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans) (6)

Where εb2 is a zero-mean noise variable with variance b2.

The parameters α1 to α4 are robot-specific error parameters.

Consequently, we get the next moment position, xt :

⎛
⎝x′

y′

θ′

⎞
⎠ =

⎛
⎝x
y
θ

⎞
⎠+

⎛
⎝δ̂trans cos(θ + δ̂rot1)

δ̂trans sin(θ + δ̂rot1)

δ̂rot1 + δ̂rot2

⎞
⎠ (7)

Where the xt−1 = (x y θ)T represents last moment

pose. According to the above formula, every particle that

is transformed by the odometry motion model will be

distributed according to p(xt|xt−1, ut−1).

B. Measurement model

After having a priori information about the pose of the

robot, the measurement probability p(zt|xt) can be calcu-

lated as follows.

Assuming m is the known map information and

zit(i = 1, 2, 3, . . . ,K) refers to an individual measurement.

The probability p(zt|xt,m) is obtained as the product of

the individual measurement likelihoods:

p(zt|xt,m) =
K∏

k=1

p(zkt |xt,m) (8)

If zkt �= zmax, the individual measurement likelihood

p(zkt |xt,m) can be calculated as follows:

xzk
t
= x+xk,sens cos θ− yk,sens sin θ+ zkt cos(θ+ θk,sens)

(9)

yzk
t
= y+ yk,sens cos θ+ xk,sens sin θ+ zkt sin(θ+ θk,sens)

(10)

dist = min
x′,y′

{
√
(xzk

t
− x′)2 + (yzk

t
− y′)2

| 〈x′, y′〉occupied in m} (11)

p(zkt |xt,m) = zhit · prob(dist, σhit) +
zrandom
zmax

(12)

Where the function prob(dist, σhit) computes the probabil-

ity of dist under a zero-centered Gaussian distribution with

standard deviation σhit. xk,sens and yk,sens represent the

location of the sensor relative to the robot center. θk,sens
refer to the angular orientation of the sensor beam relative

to the robot heading direction. zhit, zrandom, zmax denote

the intrinsic parameters of the observe model.

C. Monte Carlo localization

MCL has a variety of different versions. In this paper,

we use KLD-Sampling MCL. KLD-sampling can adapt the

number of particles over time [10]. KLD-sampling is derived

from the Kullback-Leibler divergence, which is a measure of

the difference between two probability distributions [11]. At

each iteration of the particle filter, KLD-sampling determines

the number of samples such that, with probability 1 − δ,

the error between the true posterior, and the sample-based

approximation is less than ε.

The algorithm takes as input the previous sample set

χt−1 along with the map m and the most recent control

ut and measurement zt. In a nutshell, KLD-sampling MCL

generates particles until the following statistical bound is

satisfied:

Mχ :=
k − 1

2ε

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}3

(13)

This bound is based on the volume of the state space that

is covered by particles. The volume covered by particles is

measured by a histogram. Each bin in the histogram H is

either empty or occupied by at least one particle. Initially,

each bin b in the histogram H is set to empty. And then

each particle i is drawn from the previous sample set χt−1:

draw i with probability ∝ ωi
t−1 (14)

Based on this particle, a new particle is predicted, weight-

ed, and inserted into the new sample set χt :

x
[M ]
t = sample motion model(ut, x

[i]
t−1) (15)

ω
[M ]
t = measurement model(zt, x

[M ]
t ,m) (16)
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χt = χt + 〈x[M ]
t , ω

[M ]
t 〉 (17)

If the newly generated particle falls into an empty bin of

the histogram, then k = k + 1 and the bin is marked as

non-empty. Thus, k measures the number of histogram bins

filled with at least one particle. If k > 1 , then we use the

equation (13) to calculate the Mχ. The algorithm generates

new particles until M < Mχ or M < Mχmin. Finally, by

KLD-Sampling MLC described as above, we get the next

moment particle set χt.

III. 3D INDOOR MAP BUILDING

Initially, through odometry and lidar, the control infor-

mation ut and observe information zt are acquired. Then

KLD-Sampling MCL exploits these information to locate

the robot in the 2D map that constructed in advance. As

the robot moves, we can get its pose xt at different times

in the 2D map. The following equation describes the pose

transformation process between the last moment and next

moment:

xt = R · xt−1 + t (18)

Where R is a rotation matrix and t is a translation vector.

Meanwhile, R and t represent the posture of the robot and

kinect, since the position of kinect relative to the robot is

fixed. The kinect collects a pair of 2D color images and

depth images whenever the robot pose xt is obtained. After

that, the color and depth images can be used to build a local

3D map which is appeared by point cloud. The following

equations express how to convert 2D images to 3D point

cloud:

z = d/s (19)

x = (u− cx) · z/fx (20)

y = (v − cy) · z/fy (21)

where cx, cy , fx, fy represent kinect internal parameters

[12]. d is the depth information and s is the scaling factor.

u and v are the position of the image pixels. x, y, z are the

position of the 3D point cloud. Assuming a robot obtains

the local 3D point cloud pt−1 and pt in pose xt−1 and xt

respectively, then we can implement point cloud registration

for the pt−1 and pt . Point cloud registration, in essence,

is a process of point cloud transformation, which is often

described by a transform matrix:

T =

[
R3×3 t3×1

O1×3 1

]
∈ R4×4 (22)

IV. RESULTS AND COMPARISON

A. Experiments and Results

To prove the effect of the 3D indoor map building method

based on Monte Carlo localization in 2D map, this paper has

conducted experiments on a Turtlebot2 robot with a low cost

RPlidar lidar and a kinect as the sensors. The experimental

site is Guangdong Key Laboratory of Digital Signal and

Image Processing, Science and technology building, 4 floor,

Shantou University. The experiment environment scenario is

shown in Figure 1. The experiment consists of two parts:

1) 2D map building and localization: In this paper, we

choose Gmapping to build our 2D map. Gmapping is a ROS

package that is convenient to use [13][14][15]. It uses highly

efficient Rao-Blackwellized particle filer(RBPF) to learn

grid maps from laser range data [16][17]. The constructed

2D map is shown in Figure 2. The black lines represent

obstacles in the environment, for example the walls and

the doors, which is infeasible area that the robot should

be avoided. The white and gray area represent feasible and

unknown region respectively.

Once the 2D map is obtained, we can locate the robot

in the 2D map by using KLD-Sampling MCL. Figure 3

shows the initial localization situation. In the beginning

the robot doesn’t know where it is, therefore it has the

same probability to appear at anyplace in the 2D map.

The green dots in Figure 3 represent particles and each

particle represents a possible location of the robot. The

black dot is the robot model and its place denotes the

locating result estimated by the particles that processed

by the KLD-Sampling MCL. Through several movements,

the robot gradually determines its position by using KLD-

Sampling MCL. Figure 4 shows the localization result and

we can see that the particle gathered in the vicinity of the

estimated position.

2) 3D indoor map building: The specific 3D indoor map

is the corridor shown in Figure 1. The corridor is about 30

meters long and 2 meters wide.

In the experiment, we run the program of the proposed

method in Linux operating system. The robot is controlled

remotely with a gamepad. It starts at one end of the

corridor, then it advances in the middle of the corridor and

stops moving when it reaches the elevator. The Turtlebot2

publishes a pose information by using a ROS topic when

it moves 0.2 meters away. At the same time, a local 3D

point cloud will be built and merged with the local 3D point

cloud which obtained in the last pose. The whole 3D indoor

corridor map is shown in Figure 5. The elevator and the door

on both sides of the corridor can be easily identified in the

3D map.

B. Comparison

We make a comparison between the proposed method

and RGB-D SLAM system provided by Felix Endres et al.
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Figure 1. Experimental site: Guangdong Key Laboratory of Digital Signal
and Image Processing, Science and technology building, 4 floor, Shantou
University

Figure 2. The constructed 2D map of experimental site by using Gmapping

in [8]. In the experiment, we turn on the RGB-D SLAM

program in Linux operating system and also control the

robot with a gamepad. The robot trajectory is similar to the

last experiment. However, due to the existence of error, the

robot trajectory of these two experiments can’t be exactly

the same.

The 3D indoor map results are shown in Figure 6. In

the middle of the picture, the intersection of the yellow

lines represent robot pose and the yellow lines represent the

transform relationship between these poses. The poses and

their relationship are being constantly optimized by using

General Graph Optimization(g2o) [18].

Due to the experimental environment mainly consists of

Figure 3. Initial localization situation of the robot in 2D map

Figure 4. The robot localization situation after several movements

Figure 5. 3D indoor corridor map based on Monte Carlo localization in
2D map

Figure 6. 3D indoor corridor map using RGB-D SLAM system provided
by Felix Endres et al.

white walls and brown doors, it is lack of features. The RGB-

D SLAM system generates many matching and cumulative

errors. And these errors generated by the visual localization

are so serious that the g2o algorithm can’t correct them

which result in a messy 3D indoor corridor map shown in

Figure 6.

V. CONCLUSION

In this paper, we design a 3D indoor map building method

based on Monte Carlo localization in 2D map. The MCL

in 2D map can achieve a higher localization accuracy and

avoids some shortcomings of the visual localization, espe-

cially in the terms of time consuming and cumulative errors.

To verify the effect of suggested method, we make some

experiments to test the performance of proposed method

and the popular open source RGB-D SLAM system based

on visual localization. The experimental results show that

the proposed method can achieve better localization which

results in a better 3D map.

The future work will mainly focus on the application of

3D indoor map in the robot navigation and optimizing the

pose and the pose transform matrix of the robot.
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